Activité 3: L'effet des hormones de synthèse sur la faune aquatique

- 1) A l'aide du doc 1, relevez à quelle concentration les hormones de synthèse des pilules sont toxiques.
- 2) A l'aide du doc 2, relevez à quelle concentration les hormones de synthèse des pilules induisent des effets chez les espèces qui sont à leur contact. Relevez quelques effets secondaires de l'exposition à EE2 et indiquez le point commun entre eux. D'après vous, quelles conséquences auront ces effets sur la reproduction des espèces aquatiques ?
- 3) A l'aide du doc 3, expliquez rapidement pourquoi on pourrait trouver des hormones de synthèse dans les cours d'eau.
- 4) A l'aide des docs 4 et 2, vérifiez si les concentrations d'hormones mesurées dans les cours d'eau sont ou non susceptibles de perturber la faune aquatique. Argumentez.
- 5) Sachant que la dose létale du paracétamol est de 2,4g/kg chez l'humain, la concentration de l'eau du robinet en paracétamol est-elle problématique ?

Doc 1 : Seuils de toxicité létale à différentes hormones naturelles et synthétiques chez différentes espèces aquatiques

Molécules Espèces testées		Durées des tests	Toxicités (CL ₅₀)	Références	
Testostérone	Acartia tonsa (microcrustacé)	48 h	5,6 mg/l	Andersen et al., 2001	
E1	Neomysis integer (microcrustacé) 96 h > 10 mg/l Ghekier		Ghekiere et al., 2006		
EE2	Acartia tonsa (microcrustacé)	48 h	1,1 mg/l	Andersen et al., 2001	
	Daphnia magna (microcrustacé : puce d'eau)	48 h	5,7 mg/l	Halling-Sørensen et al., 1998	
	Pimephales promelas (poisson méné tête-de-boule)	96 h	1,6 mg/l	Sumpter and Johnson, 2005	
	Gammarus pulex (microcrustacé : microcrevette)	96 h	1,7 mg/l	Pascoes et al., 2003	
	Hydra vulgaris (hydre)	96 h	3,8 mg/l	Pascoes et al., 2002	

Les pilules contraceptives sont fabriquées à partir d'hormones de synthèse mimant les oestrogènes et/ou la progestérone.

La molécule principale qu'elles contiennent est EE2.

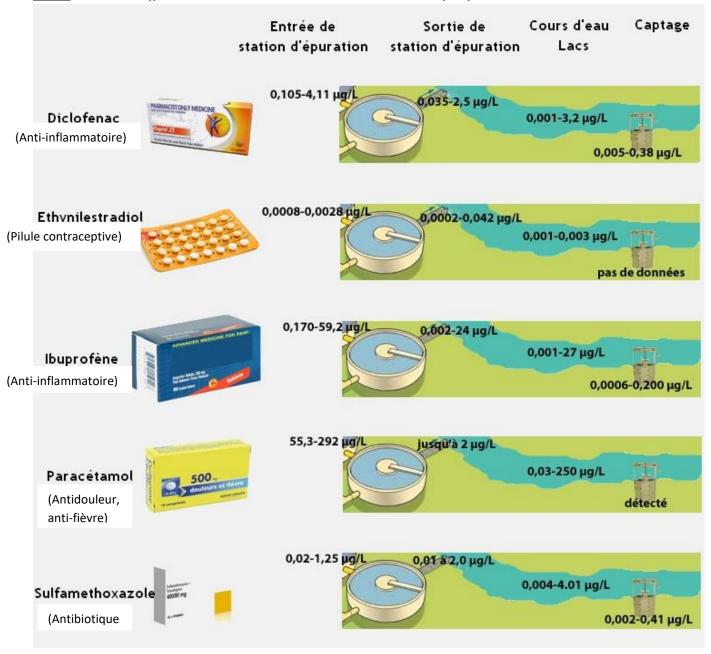
La toxicité (CL₅₀) indique la teneur au-delà de laquelle la moitié des individus testés meurent de l'exposition à la substance concernée.

<u>Doc 2 :</u> Seuils de toxicité sublétale (non mortelle) chez différentes espèces aquatiques à l'exposition à EE2.

Molécules	Espèces testées	Durées des tests	Toxicités	Effets observés	Références	
EE2	Pimephales promelas (poisson méné tête-de- boule)	21 jours	CMEO = 0,1 ng/l	Augmentation du nombre d'œufs engendrés	Bandanuli et el 2004	
			CMEO = 10 ng/l	Diminution des taux de fertilisation		
				Changements histologiques dans les testicules		
			CMEO = 1 ng/l	Induction de la vitellogenèse		
				Changements ultrastructuraux dans les testicules et le foie chez le ♂	Pawlowski <i>et al.</i> , 2004	
				Réduction du nombre de tubercules chez les mâles		
			CMEO = 3 ng/l	Changements ultrastructuraux dans le foie chez les femelles et les mâles		
	<i>Danio rerio</i> (poisson zèbre)	71 jours	CMEO = 3 ng/l	Développement d'un ovule dans le testicule	Maack and Segner, 2004	
		1-3 jours	$CE_{50} = \ge 2,96 \text{ ng/1}$	Diminution des protéines immunitaires	Milla et al., 2011	
		21 jours	$CE_{50} = \ge 8,89 \text{ ng/l}$	Diminution du nombre de leucocytes		
		4 mois	CMEO = 0,05 ng/l	Féminisation des caractères sexuels des mâles		
			CMEO = 0,5 ng/l	Changement dans le ratio de sexe en faveur des femelles	Larsen et al., 2008	
			CMEO = 5 ng/l	Changement dans le comportement des mâles		
	Oncorhynchus mykiss	21 jours	CMEO = 0.1 m-/1	Industion de la vitallacentes	Thorpe et al., 2003	
	(truite arc-en-ciel) NS		CMEO = 0.1 ng/l	Induction de la vitellogenèse	Routledge et al., 1998	
	Oryzias latipes (poisson médaka)	100 jours	CMEO = 0,1 ng/l	Développement d'ovules dans les testicules	Metcalfe et al., 2001	


CMEO: Concentration Minimale à Effets Observés.

Histologie: organisation des cellules dans les organes


Vitellogenèse: production de substances formant les œufs

<u>Sex-Ratio</u>: une population compte normalement environ autant de mâles que de femelles. Le Sex-Ratio est déséquilibré s'il y a plus de mâles que de femelles, ou inversement.

Doc 3 : Le devenir des principes actifs d'un médicament

Doc 4: Mesures de différents résidus médicamenteux dans les cours d'eau français

